If it's not what You are looking for type in the equation solver your own equation and let us solve it.
45x^2+15x=0
a = 45; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·45·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*45}=\frac{-30}{90} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*45}=\frac{0}{90} =0 $
| 12=1-5v+1 | | -16=x-5-6 | | 0.25*x+x=3000000 | | 0.25*x=3000000 | | X+14=2x+4 | | (x*0.25)=300000 | | 300000-(x*0.25)=0 | | 3000000-x*0.25=0 | | 300000-x*0.25=0 | | 12y+y=22 | | 4x-6=(14-6x)/2 | | 12x−9=10x−15 | | 4(2x-5)+5x=57 | | F(0)=2n | | 7a5a=11 | | √x+1-√x-1=1 | | 6x-8=7-3x | | x+(5-x)/5=3x/5 | | 4x-6=14-6x/2 | | (3x+5)/5=4 | | c-4=(-12) | | -4n+2=3-3n | | -4r=-3r+9 | | 2g=4+g | | -5b=-4b-8 | | f(12)=12f(12-1)+2 | | -m=8-3m | | 28-14=44-x | | 6(5x−5)=−31(7−x) | | (-5)/(9)x=2 | | 7+3((x-4)-10=-10 | | -8(8b-7=-1-7b |